

Throughflow Analysis Algebra

Other Properties

- Recycling Finn Cycling Index
- Network Amplification
 - Number of $n_{ij} > 1$ where $i \neq j$
- Network Aggradation
 - $-TST/sum(z_i)$
 - a.k.a. average path length, multiplier effect
 - Consequence of system formation

What do species do in ecosystems?

John H. Lawton OIKOS 71: 367-374. Copenhagen 1994

- What are the relative roles of species/groups in ecosystems and communities?
- Are some species more or differently important than another? When? Why? How?
- Describe the functional roles

Significance

- · Conservation biology and ecosystem management
- Understand biodiversity loss

Discussion – Ecosystem Organization and Developmer

- TST → Power (Patten 1991)
 - Operationalized Maximum Power principle (Lotka 1922)
- T_i is partial power
 - Each node is a subsystem, so maximum power should apply to each node
 - Why is throughflow not evenly distributed?
 - restrained by
 - evolutionary constraints of the individual organisms
 - embedded within the existing ecosystem autocatalysis & centripitality

Throughflow Centrality Summary

- Characterizes the relative importance of nodes in an ecosystem network – with respect to flow generation
- · Weighted degree type centrality
- Special case of Hubbell Centrality (SNA)
- In ecosystems, TC tends to be concentrated in a few nodes (<4) with a longer tail of less central nodes
- Important nodes tend to be primary producers, detritus, and bacteria

Borrett 2013

Ecological Network Analysis: Flow Analysis

Flow Analysis Summary

- Introduction to Flow Analysis
- Flow Analysis Algebra main results {T, G, GP, N, NP, ns}
- · Network Statistics & Ecosystem Properties
 - Network Homogenization
 - Network Non-locality (dominance of indirect effects)
- · Throughflow Centrality
- · Ecosystem Impacts of Shrimp Trawling

Suggested Activities

Each Person/Team Should Select a Model Use enaR to complete the activities

Throughflow Analysis

• Load an example model

data(oyster); M=oyster

M=read.scor("filename")

- ullet Run throughflow analysis
 - F = enaFlow(M);
 - attributes(F)
- Investigate Flow network statistics
 - F\$ns
- Use a for-loop to create a plot of the change in flow intensity, $g_{ij}^{\ \ (m)},$ as path length m increases